
773

0022-4715/04/0800-0773/0 © 2004 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 116, Nos. 1/4, August 2004 (© 2004)

Design of a Nanomagnet

Daniel C. Mattis1

1Department of Physics, University of Utah, 115 S. 1400 E., #201 Salt Lake City, Utah 84112-
0830; e-mail: dancmat@comcast.net

Received June 14, 2003; accepted October 14, 2003

We design a two-dimensional ferromagnet of quantum spheres of radius
O(10 nm3) made of nonmagnetic intrinsic semiconducting material, each con-
nected to its neighbors by nano-cylinders made of identical material. Ferro-
magnetism ensues if there is precisely one electron trapped in each sphere; this is
a direct consequence of a theorem by Elliott Lieb. We analyze and estimate the
important materials parameters. At concentrations of less than 1 electron per
sphere, ultimate collapse of the ferromagnetic state should yield a paramagnetic
Fermi liquid. We point out the need for additional numerical and physical
experimentation.
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INTRODUCTION

One of the goals of ‘‘spintronics’’ has been the production and manipula-
tion of spin-polarized electrons in microelectronic circuitry. Here I show
how magnetically polarized arrays of arbitrary size can be constructed out
of nonmagnetic semiconducting material such as intrinsic silicon into which
electrons have been injected. This design implements in two dimensions a
beautiful theorem by Lieb2 relating the spontaneous spin-magnetism of a

2 The theorem proved by Elliott Lieb, Phys. Rev. Lett. 62, 1201 (1989), on which our model of
bubbles and channels is based, applies—strictly speaking—only to the Hubbard model. It
generalizes earlier work by E. Lieb and D. Mattis, J. Math. Phys. 3, 749 (1961), concerning
the Heisenberg model (spins) in bipartite lattices with antiferromagnetic exchange interac-
tions.

network to its connectivity and geometry. It also relies on a phenomenon
of wave mechanics that has only been understood in recent years: the
formation of localized states at singularities in electron waveguides.



In a separate publication I show how some of these results can be dupli-
cated—or extended—even in one-dimensional arrays.

Lieb’s theorem applies to interacting electrons on half-filled bipartite
networks, regardless of their short- or long-range-order. For simplicity the
network we shall analyze in this paper will be ideally ordered. ‘‘Bipartite’’
implies that an electron on an A site can only ‘‘hop’’ (i.e., be transferred,)
to a nearby B site, and vice-versa. A to A or B to B hops are prohibited.
Lieb proved that the ground-states of any such system include a state of
total spin moment Stot=

1
2 |NA−NB | (in units of () NA and NB are respec-

tively the number of A and B sites, not necessarily equal and not neces-
sarily ordered.

I shall specify a nano-array that is conjectured, by virtue of this
theorem, to exhibit spontanous ferromagnetism.3 Physically it consist of

3 Some may call it ferrimagnetism because of the analogy to the Fe2+/Fe3+ alternation in
ferrites that results in a net magnetic moment.

identical, interconnected, nonmagnetic quantum dots organized into N cells
in a two-dimensional network where NA=2NB=2N. For historical and
other reasons I choose the architecture to be that of the ‘‘decorated’’ sq
lattice of planar CuO2. Indeed, this example of a bipartite lattice, specifi-
cally cited in footnote 2, is commonly associated with high-Tc supercon-
ductivity. In our variant, illustrated in Fig. 1, the Cu and O ions are
replaced by a set of identical spherical objects that we name ‘‘bubbles’’ to
distinguish them from the usual quantum dots. They are connected by solid
cylinders or nanotubes made of the same material as the bubbles. We shall
use the nomenclature ‘‘channels’’ for these solid cylinders, to distinguish
them from the hollow carbon nanotubes which serve entirely different func-
tions. Because spheres and cylinders are all constituted out of the same
intrinsic, nonmagnetic, semiconductor material the work function is iden-
tical throughout. The radii, b, of the bubbles and the radii, a, and lengths l
of the channels are picked to favor electron occupancy of bubbles over
channels.

The entire array could be formed by uv nanolithography followed by
selective etching. Instead of, or in addition to, using ion implantation or
chemical doping to introduce electrons into the neutral semiconductor
material, we propose their injection by tunneling, using a standard capaci-
tative method such as that which informs the usual MOSFET devices.4

4Without discussing this technology any further than to point out that the reqired density of
electrons in our model is quite low and therefore achievable, of the order of or less than
1012/cm2, we point out that an alternative way and perhaps simpler of reaching the same
goal uses the techniques of Pepper and collaborators, as we shall elaborate elsewhere.
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Fig. 1. Indicates the layout of spheres and the cyclinders that connect them (‘‘bubbles’’ and
‘‘channels’’) in the model array discussed in the text. For our example we have chosen spheri-
cal radius b=1.5a, (a=cylinder radius) and an optimal cylinder length l=1.683a. The mag-
nitude of a is arbitrary—until Coulomb forces and effective exchange interactions are taken
into account and optimized. This reveals that a must be in the 10 nm range.

As shown in Fig. 1, each bubble is connected by channels to either 2
or 4 nearest-neighbor spheres. Spheres that ‘‘decorate’’ the square lattice
are assigned to the A sublattice while the corner spheres constitute the B
sublattice, an ordinary sq lattice. In an infinite array the unit cell can be
chosen to include one B and its two A nearest-neighbors (one immediately
above it and the other immediately to its right.) Lieb’s theorem tells us that
for 3N electrons (one per bubble and none in the channels,) the ground
state spin per unit cell can be as large as s=Stot/N=1

2 for N in the
thermodynamic limit NQ..5

5 For a sample with finite N and a rectangular perimeter the average magnetization per cell s
is somewhat less (because, on the perimeter, the number of A’s equals the number of B’s
hence overall NA < 2NB). For a single decorated square s=0, for two contiguous squares it
is s=1/4 in each, etc., rapidly approaching the saturation value s=1/2.

In what follows we optimize values for the parameters a, l, and b so
that: (1) electrons reside principally in the bubbles and not in the channels
that connect them and such that, (2) on average only a single electron
occupies each bubble. For the chosen geometry, this amounts to 3 electrons
per cell. We have calculated the various dimensions to yield the maximum
possible correlations among electrons. The idealized ferromagnet that
results in this design is an electrical insulator, because the on-site Coulomb
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interaction is sufficiently strong to discourage charge fluctuations. In other
words, we rely on a mechanism called the ‘‘Coulomb blockade’’ in the
example of a single microdot and ‘‘Mott insulator’’ for an array.

Small changes in electron density or Fermi level can transform our
array into a nonmagnetic conductor, while changes in the architectural
design can produce an ordered antiferromagnet instead. The latter, again
depending on position of the Fermi level, could also be made into a metal
and possibly into a superconductor.6

6Details will be given in separate publications: D. Mattis, to be submitted.

Over-all contractions or expansions of the length scales affect various
important parameters differently, therefore there is an optimum length
scale to be calculated for each desirable physical property, given a geom-
etry and a particular many-body system. Here we concentrate on the
Hubbard–Lieb ferromagnet.

SPHERES AND CYLINDERS

Let all the channels have the same radius a (cross-sectional area pa2,)
length l > a and all spheres radius b, with b > a. A variational upper bound
on the internal one-electron energy levels E and a first approximation to
the corresponding stationary states Y of each physical (i.e., connected)
bubble may be obtained by the following procedure: insert 1 electron into
an idealized sphere of radius b and set its wavefunction Y=0 on the
surface, ignoring the embedded channels. We shall assume that the material
properties (mobility, dielectric constant o, carrier mass m*) are those of the
bulk semiconductor.

The zeros of the relevant Bessel functions then yield the energies for
the spheres and also for the transverse energy in the channels (the bottom
of a continuum once the longitudinal energies are added in). It is conve-
nient to express all energies in terms of the threshold channel energy
Ea(0, 0).7 In these units, states of energy e < 1 live in the spheres while

7 This unit compares to the Rydberg (binding energy of an Hydrogen atom,) as follows:
Ea(0, 0)=2.9(m/m*)(ao/a)2×13.6 eV, where ao=Bohr radius % 1/20 nm. After determin-
ing the optimal cylinder radius a (in nm) we obtain Ea(0, 0) in eV from this formula.

states of energy e > 1 (scattering states of the spheres) are localized mainly
in the channels.

One extracts the ideal range for the ratio (b/a)2 using the following
criteria. Requiring (b/a)2 > 1.7021 ensures there is at least 1 state of the
sphere with e < 1. If the ratio also satisfies (b/a)2 < 3.4923 then there is at
most 1 such state.8 The ground state wave function is of course nodeless,

8 This last is not as important a requirement as the first.
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Fig. 2. Sketch of the energies and energy bands in the free-electron approximation for the
given layout and parameters. In plotting the densities of state r(e) we show 3 non-overlapping
bands. The central one is sharp (all its states are localized) and the two that straddle it exhibit
van Hove singularities, as indicated. But note that this band structure does not survive in
strong coupling.

with angular and radial quantum numbers l=0, n=0. A mid-range
compromise adopted here and in the rest of this paper has a % 2b/3; it
corresponds to eb(0, 0)=0.7564 ( % 3/4 to graphical accuracy.) We shall
examine other possibilities in future studies.

SPIN PARAMAGNETISM OF (HYPOTHETICALLY)

NONINTERACTING ELECTRONS

Next we examine the connections that allow an electron to tunnel
from one sphere to the next. In any extensive periodic array (N± 1,)
Bloch’s theorem applies and the individual levels broaden into the energy
bands sketched in Fig. 2 and detailed below. The bandwidths are multiples
of an ‘‘effective’’ hopping parameter t, itself a function of a, b, and l and
closely related to the decay length l (of the bound state into a channel.) Let
us pursue this in the 1-electron picture, temporarily ignoring the Coulomb
interactions of 2 or more electrons. We examine the 2-body Coulomb
forces in the next section.

The exponential decay of the sphere’s lowest bound state into a con-
necting channel is characterized by a length l,

l % a= 1/5.7985
1−1.7021(a/b)2

=
0.4153a

`1−1.7021(a/b)2
(1)
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from which we deduce9 the value of t for two bubbles separated by a

9 This formula is obtained by calculating the splitting between bonding and antibonding
‘‘molecular’’ orbitals and setting it equal to 2t in an equivalent tight-binding model.

channel of length l:

t=
(
2

4m*l2
exp−(l/l). (2)

At fixed a we alter l in Eq. (1) by varying the ratio a/b. For fixed l the
hopping parameter t in Eq. (2) vanishes at both small and large values of l
and is maximal at l=l/2. Evaluating Eq. (1) using a/b % 2/3 and replac-
ing l by l/2 in that formula, we find the optimal cylinder length to be
l=1.683a. Insertion into Eq. (2) show that the latter scales with Ea(0, 0),
thus yielding an optimal dimensionless hopping parameter y — t/Ea(0, 0)=
0.0165, independent of a.

In tight-binding three energy bands emerge for this particular geom-
etry: one of zero width at precisely Eb(0, 0) and two that straddle it,
E(±)(qx, qy)=Eb(0, 0)±2tc(qx, qy), where c=(cos2 qxd/2+cos2 qyd/2)1/2.
(Here d/2=l+2b is the distance separating the centers of two neighboring
spheres.) As shown in Fig. 2, for our choice of b/a=1.5 the dimensionless
energies of all the Bloch states in the three bands shown in Fig. 2 lie below
the threshhold, e(qx, qy) < 1, and therefore they all live on the bubbles. The
density of states r in the central band of zero width is a Dirac delta func-
tion. The finite-width energy bands have bandwidthsDe=2`2 y=0.0466 %
0.05 each. Their densities of state r(e) exhibit logarithmic van Hove sin-
gularities, as sketched.

A word on the unit of energy7 is in order at this point. Express
Ea(0, 0) in eV and assume a fixed m*/m=0.01 for the sake of definiteness.
Then for Ea(0, 0) to exceed a given value in eV—say x eV—necessitates
a < 10

`x
nm.

In the (purely hypothetical!) case that there are no Coulomb repul-
sions, the multiple many-body ground states of 3N electrons are con-
structed as follows: 2N occupy the lowest band and disappear from
consideration. A number Na ranging from N/2 to N, have spin ‘‘down’’ in
the degenerate band, with the remaining N‘ =N−Na having spin ‘‘up.’’
This yields a ground state degeneracyWo=2N. Total spin Stotal ranges from
0 to a maximum value Smax=

N
2 while, for each Stotal, Sz ranges from −Stotal

to+Stotal.
Thus, even though the total number of electrons is fixed, s, the mag-

netization per cell =Stotal, can vary from 0 to a maximum value 1/2 in the
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ground state(s). The N fermions in the dispersionless band are in effect
paramagnetic, just as a collection of N noninteracting spins 1/2 would
be.10

10 A similar conclusion applies to varying numbers N of electrons in the range 2N [ N [ 4N.
The Fermi level remains pinned to the level Eb(0, 0) while s ranges between zero and a
maximum smax(N)=1/2(1− |N−3N|/N). Because the Bloch energies exhibit no dispersion,
there is neither electrical conductivity nor orbital diamagnetism in this range of occupation
numbers within the independent electron model.

FERROMAGNETISM AS A RESULT OF COULOMB REPULSIONS

However, once 2-body repulsive forces are introduced, Lieb’s theorem
ensures that only the most magnetic configurations survive in the ground
state. The system acquires a sturdy, macroscopic, moment. The most
interesting questions concern repositioning of the many-body states in the
presence of Coulomb interactions. Physically, the physics of the bubbles
and channels maps onto a sort of tight-binding model,

H=−t C
[F, s

(b+[F, s(a[F+(0, 12), s+a[F+(12, 0), s)+H.C.)

+UC
j̄
(n[F, ‘ n[F, a +n[F+(0, 12), ‘ n[F+(0, 12), a +n[F+(12, 0), ‘ n[F+(12, 0), a), (3)

a species of Hubbard model on a decorated lattice in which only the intra-
bubble electrostatic interaction terms 3 U are retained. The truncation of
the Coulomb interactions presupposes that the most important correlations
are local, i.e., that an electron repels a second electron strongly if within the
same sphere but in a negligible way when it is on neighboring spheres. The
formulation in Eq. (3) takes the intra-atomic exchange interaction among
bound states in bubbles into account exactly, provided there is only 1
bound state per bubble (just as in the familiar Hubbard model.) Neglect of
the Coulomb force between 2 electrons on neighboring bubbles requires us
to neglect nearest-neighbor direct exchange correction, which is ferromag-
netic but too weak to interefere with antiferromagnetic correlations. Just as
in the Hydrogen molecule, nearest-neighbor electrons in this construction
are always correlated antiferromagnetically, never ferromagnetically.

In fact, the main effect of the Coulomb interaction U=(e2/ob) f(b) is
to inhibit double occupancy of a given sphere. (Here e is the charge on an
electron, o is the dielectric constant of the semiconductor and f is a slowly
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varying function O(1) related to the solution of the 2-body problem within
a sphere.) This same inhibition causes the Coulomb blockade in ordinary
microdots.

In units of Ea(0, 0) the dimensionless Coulomb repulsion is,

u —
e2f/ob

(
25.7985/2m*a2

=1 a
ao
21a

b
21m*

m
21 f

2.9o
2 , (4)

where ao is the ordinary Bohr radius ( % 1/20 nm). The second of 4 factors
can be replaced by the chosen value 2/3.

If for the factors m*/m and f/2.9o we arbitrarily assume 0.01 and 0.1
respectively, we obtain u % (4/300)×a where a is expressed in nm.11 With a

11 Strictly speaking, once U given by this formula exceeds the ionization potential of the
sphere DW — Ea(0, 0)−Eb(0, 0) it must be replaced by a fixed DW and u ceases to increase
with a. In our example this occurs once a has reached or exceeded 19 nm, so we shall restrict
the analysis in this paper to a < 19 nm.

channel radius as small as a=7.5 nm this expression yields u=0.1, an
amount that is quite significant by comparison with the free-electron
bandwidths De=0.05. While larger a leads to an even greater value of u,
both y and De are rigorously constant w.r. to a. Thus the relative impor-
tance of the Coulomb force relative to the hopping increases with increas-
ing a up to some maximum value.11 (Note that the physical t decreases with
increasing a, proportionally to a −2, while the physical U also decreases, but
only proportionally to a−1 so that both tend to zero as the length scale
increases beyond the desirable 10 nm range.)

In analyzing 3N electrons with u± y it might be tempting to choose a
product state of exactly 1 electron per sphere, avoiding double-occupancy.
But the energy of this state is 0, which is not optimal. Moreover it leaves
the total spin indeterminate, even more so than in the previously examined
case of noninteracting fermions. Perturbation theory suggests that one
should allow the electrons on the A and B sites to carry opposite spins with
probability amplitudes O(y/u) of hopping onto an already occupied nearby
site. Then perturbation theory allows us to estimate the ground state
energy as −4Nt2/U=−4NEa(0, 0) y2/u, a substantial improvement.12 As

12 Actually, the ground state energy per unit cell is found to be approximately E0/N % −2J,
where J=2t2/U.

shown in footnote 2, this system of fermions maps onto a ferrimagnet of
spins 1/2 on the very same bipartite lattice, having a ground state belong-
ing to total spin N/2. This is apparent from Fig. 3 indicating Sz=N/2.
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Fig. 3. Spin correlations on the model Hubbard–Lieb ferrimagnet, when the occupation
density n is slightly less than 3. A ‘‘hole’’ (missing electron of spin ‘ ), shown on an A site,
cannot survive on a B site but tunnels to a neighboring A site with a greatly reduced matrix
element teff % O(t2/U) (see text). The exchange parameter J that stabilizes the antiparallelism
becomes negligible once the length scales become too great, e.g., for a± 10 nm, therefore
some sort of electronic conductivity or diffusivity should occur at finite temperature for any
occupancy v < 3.

EFFECTIVE EXCHANGE PARAMETER

An effective ‘‘exchange parameter’’ J % 2t2/U=(2y2/u) Ea(0, 0)
governs the effective spin-spin correlations in the ferrimagnet, important
if we wish to map (3) onto some sort of t−J model. It measures the
maximum thermal fluctuation kT that the magnetic order can withstand. In
our units, the dimensionless exchange parameter is j=J/Ea(0, 0),

j=
0.041
a

(with a in nm). (5)

To stabilize the ferromagnetism it is desirable for j to be as large as
possible. Assuming Ea(0, 0)=1 eV and a=10 nm, we have: j % y/4,
J/kB=44 K and De=j>540 K. Although this suffices for a reasonable
prototype, the design parameters will have to be chosen more precisely if
one is to stabilize a maximum magnetic moment at room temperature.

DISCUSSION AND SUMMARY

Several features distinguish physical, interacting electrons from their
simpler (but unrealistic) noninteracting counterparts:
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(a) For 3N noninteracting electrons the ground state is exponentially
degenerate whereas the ground state of 3N physical electrons belongs
only to maximum spin, i.e., exhibits only the trivial inherent degeneracy
2Smax+1. Both interacting and noninteracting systems attain their maxi-
mum spin density at 3N electrons and are nonmagnetic (i.e., have a ground
state with S=0) at 2N or fewer electrons, or at 4N or greater number of
electrons.

(b) The ground state energy of 3N noninteracting electrons is rela-
tively large, −O(N |y|), (in units of Ea(0, 0), ) while that of the strongly
interacting electrons is very much reduced by an extra factor y/u, to
−O(Ny2/u).

(c) The occupancy factor n (number of electrons per cell) of nonin-
teracting electrons can range from 2 to 4 all the while the Fermi level
remains pinned to Eb(0, 0). Hence there is no transport in this range of
occupancy. In contrast, the more physical system of interacting electrons
can exhibit some ‘‘hole’’ conductivity or diffusion over a portion of the
range13 n [ 3. The carriers have positive charge relative to the overall

13 For strongly interacting electrons only the range n [ 3 is easily accessible, as each extra par-
ticle over 3N ‘‘costs’’ an extra energy u. See also footnote 11.

original negative charge −3Ne. But because the motion of 1 hole (vide
Fig. 3) leaves a wake of re-arranged spins, or must tunnel through a barrier
of height u such hopping is inhibited by a factor of O(y/u).

In forthcoming works, we shall discuss various related topics such as
(1) the photoconductivity in this model, (2) the construction of a formal
bubble-and-channel equivalent of CuO2 (it requires the A bubbles to be
substantially larger than the B’s, or to be replaced by dimers), (3) and
various small-cluster calculations on which to base the dimensional esti-
mates on a firmer footing. In this paper we have established that a purely
theoretical construct by Elliott H. Lieb might some day change our notions
of physical reality.
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